tslumen.report.html package¶
tslumen.report.html.report module¶
Module with the main class HtmlReport.
-
class
tslumen.report.html.report.HtmlReport(df: pandas.core.frame.DataFrame, meta: Optional[dict] = None, result: Optional[tslumen.profile.base.BundledResult] = None, profiler: Optional[tslumen.profile.base.BundledProfiler] = None, profiler_config: Optional[dict] = None, scheduler: Optional[tslumen.scheduling.Scheduler] = None, scheduler_config: Optional[dict] = None)[source]¶ Bases:
tslumen.report.base.Report,tslumen.report.html.base.HtmlBlockRenders the profiling results as an interactive, fully self-contained HTML report that can be downloaded and shared without the need for a running server or Python kernel.
- Parameters
df (pd.DataFrame) – Timeseries data.
meta (Optional[dict]) – Timeseries metadata, a 2-level dictionary, first level indexed by
{'frame': {<key>: <value>}, {'series': {<series name>: <desc>}}.result (Optional[BundledResult]) – For instantiating the report with pre-computed results from a profiler.
profiler (Optional[BundledProfiler]) – The BundledProfiler to run the profiling, defaults to DefaultProfiler.
profiler_config (Optional[dict]) – Profiler’s configurations.
scheduler (Optional[Scheduler]) – A Scheduler, default’s to Scheduler.
scheduler_config (Optional[dict]) – Scheduler’s configurations.
-
SECTIONS= [<class 'tslumen.report.html.sections.SectionSummary'>, <class 'tslumen.report.html.sections.SectionTimeSeries'>, <class 'tslumen.report.html.sections.SectionTSFeatures'>, <class 'tslumen.report.html.sections.SectionRelations'>]¶
-
duration: Optional[datetime.timedelta]¶
-
property
html¶ Lazy loading property with the HTML representation of the report.
-
save(path_or_buffer: Optional[Union[str, io.TextIOBase]] = None, mode: str = 'w', encoding: Optional[str] = None) → Optional[str][source]¶ Save rendered html to disk
-
sections: List[tslumen.report.html.base.HtmlBlock]¶
tslumen.report.html.sections module¶
Module with the sections that go into HtmlReport.
-
class
tslumen.report.html.sections.SectionRelations(result: tslumen.profile.base.BundledResult, meta: dict, df: pandas.core.frame.DataFrame, scheduler: Optional[tslumen.scheduling.Scheduler] = None)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockClass holding the contents of the “Correlations” section
-
class
tslumen.report.html.sections.SectionSummary(result: tslumen.profile.base.BundledResult, meta: dict, df: pandas.core.frame.DataFrame, scheduler: Optional[tslumen.scheduling.Scheduler] = None)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockClass holding the contents of the “Summary” section
-
class
tslumen.report.html.sections.SectionTSFeatures(result: tslumen.profile.base.BundledResult, meta: dict, df: pandas.core.frame.DataFrame, scheduler: Optional[tslumen.scheduling.Scheduler] = None)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockClass holding the contents of the “Features” section
-
class
tslumen.report.html.sections.SectionTimeSeries(result: tslumen.profile.base.BundledResult, meta: dict, df: pandas.core.frame.DataFrame, scheduler: Optional[tslumen.scheduling.Scheduler] = None)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockClass representing the Time Series section
-
property
html¶ Returns: str: Class representation as a HTML block, as rendered by Jinja.
-
property
-
class
tslumen.report.html.sections.SubTimeSeries(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockClass holding the content for each time series in the “Time Series” section
-
class
tslumen.report.html.sections.TabTSAutoCorrelation(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockTime Series tab: Auto Correlation
-
class
tslumen.report.html.sections.TabTSComponents(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockTime Series tab: Components
-
class
tslumen.report.html.sections.TabTSDistribution(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockTime Series tab: Distribution
-
class
tslumen.report.html.sections.TabTSFeatures(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockTime Series tab: Features
-
class
tslumen.report.html.sections.TabTSLagPlots(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockTime Series tab: Lag Plots
-
class
tslumen.report.html.sections.TabTSSeasonality(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockTime Series tab: Seasonality
-
class
tslumen.report.html.sections.TabTSSmoothing(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockTime Series tab: Smoothing
-
class
tslumen.report.html.sections.TabTSStatistics(name: str, result: Dict[str, Any], ser: pandas.core.series.Series)[source]¶ Bases:
tslumen.report.html.base.HtmlBlockTime Series tab: Statistics
tslumen.report.html.base module¶
Base classes for building the HTML report.