tslumen.profile.correlation module¶
Auto/correlation functions, including Spearman, ACF, PACF, etc.
-
tslumen.profile.correlation.
acf
(data: pandas.core.series.Series, lags: int = 40, adjusted: bool = False, fft: bool = False, alpha: float = 0.05, missing: str = 'none') → pandas.core.frame.DataFrame[source]¶ Calculates the autocorrelation function on level data.
- Returns
DataFrame with 4 columns: lag, correlation, low and up.
- Return type
pd.DataFrame
-
tslumen.profile.correlation.
acf_1d
(data: pandas.core.series.Series, lags: int = 40, adjusted: bool = False, fft: bool = False, alpha: float = 0.05, missing: str = 'none') → pandas.core.frame.DataFrame[source]¶ Calculates the autocorrelation function on 1-differenced data.
- Returns
DataFrame with 4 columns: lag, correlation, low and up.
- Return type
pd.DataFrame
-
tslumen.profile.correlation.
acf_2d
(data: pandas.core.series.Series, lags: int = 40, adjusted: bool = False, fft: bool = False, alpha: float = 0.05, missing: str = 'none') → pandas.core.frame.DataFrame[source]¶ Calculates the autocorrelation function on 2-differenced data.
- Returns
DataFrame with 4 columns: lag, correlation, low and up.
- Return type
pd.DataFrame
-
tslumen.profile.correlation.
corr_kendall
(data: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source]¶ - Parameters
data (pd.DataFrame) – Timeseries dataframe.
- Returns
Kendall correlation.
- Return type
pd.DataFrame
-
tslumen.profile.correlation.
corr_pearson
(data: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source]¶ - Parameters
data (pd.DataFrame) – Timeseries dataframe.
- Returns
Pearson correlation.
- Return type
pd.DataFrame
-
tslumen.profile.correlation.
corr_spearman
(data: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source]¶ - Parameters
data (pd.DataFrame) – Timeseries dataframe.
- Returns
Spearman correlation.
- Return type
pd.DataFrame
-
tslumen.profile.correlation.
granger_causality
(data: pandas.core.frame.DataFrame, test: str = 'ssr_chi2test', addconst: bool = True, maxlag: int = 5, max_diff: int = 3, adf_confidence: float = 0.1) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, int][source]¶ Attempts to make the data stationary by applying differencing if needed (up to
max_diff
) – determined based on ADFuller test onadf_confidence
with autolag calculation based on AIC; for each series pair, runs granger causality test and gets the smallest p-value and corresponding lag; builds a matrix with the result.- Parameters
data (pd.DataFrame) – Timeseries dataframe.
test (str) – Test name to use with Granger Causality.
addconst (bool) – Include a constant in the model.
maxlag (int) – Compute Granger Causality up til maxlag.
max_diff (int) – Diff at most max_diff times to attain stationarity.
adf_confidence (float) – Confidence level for the ADFuller test on stationarity.
- Returns
p-values matrix, lags matrix, number of differencing
- Return type
pd.DataFrame, pd.DataFrame, int
-
tslumen.profile.correlation.
lag_corr
(data: pandas.core.series.Series, lags: Optional[Tuple[int, …]] = ()) → Tuple[pandas.core.frame.DataFrame, pandas.core.series.Series][source]¶ Creates a DataFrame with the level data plus shifts as per the
lags
parameter.- Parameters
data (pd.Series) – Timeseries data.
lags (Optional[Tuple[int, ..]]) – Lags to shift the data on. If not supplied attempts to find appropriate defaults based on the frequency.
- Returns
DataFrame with shifted data, DataFrame with correlation between lagged and level
- Return type
pd.DataFrame, pd.DataFrame
-
tslumen.profile.correlation.
pacf
(data: pandas.core.series.Series, lags: int = 40, method: str = 'ywadjusted', alpha: float = 0.05) → pandas.core.frame.DataFrame[source]¶ Calculates the partial autocorrelation function on level data.
- Returns
DataFrame with 4 columns: lag, correlation, low and up.
- Return type
pd.DataFrame
-
tslumen.profile.correlation.
pacf_1d
(data: pandas.core.series.Series, lags: int = 40, method: str = 'ywadjusted', alpha: float = 0.05) → pandas.core.frame.DataFrame[source]¶ Calculates the partial autocorrelation function on 1-differenced data.
- Returns
DataFrame with 4 columns: lag, correlation, low and up.
- Return type
pd.DataFrame
-
tslumen.profile.correlation.
pacf_2d
(data: pandas.core.series.Series, lags: int = 40, method: str = 'ywadjusted', alpha: float = 0.05) → pandas.core.frame.DataFrame[source]¶ Calculates the partial autocorrelation function on 1-differenced data.
- Returns
DataFrame with 4 columns: lag, correlation, low and up.
- Return type
pd.DataFrame