tslumen.plot.static package¶
Default static Matplotlib plots.
tslumen.plot.static.comparison module¶
Comparison plots.
-
class
tslumen.plot.static.comparison.Heatmap(df: pandas.core.frame.DataFrame, figsize: Tuple[float, float] = (4, 0.45), min_figsize: Tuple[float, float] = (4, 4), cmap: str = 'PuBu', valfmt: str = '{x:.3f}', textcolors: Tuple[str, …] = ('black', 'white'))[source]¶ Bases:
tslumen.plot.static.base.FigureHeatmap plot.
-
cmap: str = 'PuBu'¶
-
df: pandas.core.frame.DataFrame¶
-
figsize: Tuple[float, float] = (4, 0.45)¶
-
min_figsize: Tuple[float, float] = (4, 4)¶
-
textcolors: Tuple[str, …] = ('black', 'white')¶
-
valfmt: str = '{x:.3f}'¶
-
-
class
tslumen.plot.static.comparison.Radar(df: pandas.core.frame.DataFrame, nticks: int = 5, figsize: Tuple[float, float] = (2.1, 2.1), linewidth: float = 0.75, alpha: float = 0.45, legend: bool = False)[source]¶ Bases:
tslumen.plot.static.base.FigureRadar (aka spider) plot for comparing data bearing multiple dimensions.
-
alpha: float = 0.45¶
-
df: pandas.core.frame.DataFrame¶
-
figsize: Tuple[float, float] = (2.1, 2.1)¶
-
legend: bool = False¶
-
linewidth: float = 0.75¶
-
nticks: int = 5¶
-
tslumen.plot.static.correlation module¶
Correlation plots.
-
class
tslumen.plot.static.correlation.LagCorrelation(df: pandas.core.frame.DataFrame, title: Optional[str] = None, col_lag: str = 'lag', col_correlation: str = 'correlation', col_up: str = 'up', col_low: str = 'low', figsize: Tuple[float, float] = (3.3, 2))[source]¶ Bases:
tslumen.plot.static.base.FigureLag correlation (ACF/PACF) plots, commonly known as lollipop, for analysing correlation on a given lag. Useful for auto-, partial-, cross- and partial-cross-correlation.
-
col_correlation: str = 'correlation'¶
-
col_lag: str = 'lag'¶
-
col_low: str = 'low'¶
-
col_up: str = 'up'¶
-
df: pandas.core.frame.DataFrame¶
-
figsize: Tuple[float, float] = (3.3, 2)¶
-
title: Optional[str] = None¶
-
-
class
tslumen.plot.static.correlation.LagMatrix(original: pandas.core.series.Series, lags: pandas.core.frame.DataFrame, corr: pandas.core.series.Series, ncols: int = 4, cellsize: Tuple[float, …] = (1.7, 1.7))[source]¶ Bases:
tslumen.plot.static.base.FigureLag Matrix plot.
-
cellsize: Tuple[float, …] = (1.7, 1.7)¶
-
corr: pandas.core.series.Series¶
-
lags: pandas.core.frame.DataFrame¶
-
ncols: int = 4¶
-
original: pandas.core.series.Series¶
-
-
class
tslumen.plot.static.correlation.ScatterMatrix(df: pandas.core.frame.DataFrame, df_corr: pandas.core.frame.DataFrame, figsize: Tuple[float, float] = (0.8, 0.8), min_figsize: Tuple[float, float] = (8, 8))[source]¶ Bases:
tslumen.plot.static.base.FigureScatter matrix (aka pair plot) with scatters, KDE and correlation Heatmap.
-
df: pandas.core.frame.DataFrame¶
-
df_corr: pandas.core.frame.DataFrame¶
-
figsize: Tuple[float, float] = (0.8, 0.8)¶
-
min_figsize: Tuple[float, float] = (8, 8)¶
-
tslumen.plot.static.distribution module¶
Distribution plots.
-
class
tslumen.plot.static.distribution.BoxPlot(df: pandas.core.frame.DataFrame, figsize: Tuple[float, float] = (8, 3))[source]¶ Bases:
tslumen.plot.static.base.FigureBoxPlot w/ whiskers.
-
df: pandas.core.frame.DataFrame¶
-
figsize: Tuple[float, float] = (8, 3)¶
-
-
class
tslumen.plot.static.distribution.Distribution(series: pandas.core.series.Series, df_quantiles: pandas.core.frame.DataFrame, df_percentiles: pandas.core.frame.DataFrame, col_theoretical_quantiles: str = 'theoretical_quantiles', col_sample_quantiles: str = 'sample_quantiles', col_theoretical_percentiles: str = 'theoretical_percentiles', col_sample_percentiles: str = 'sample_percentiles', figsize: Tuple[float, float] = (8, 6))[source]¶ Bases:
tslumen.plot.static.base.FigureCombined Histogram, P-P and Q-Q plots.
-
col_pp_ref= 'reference'¶
-
col_qq_ref= 'reference'¶
-
col_sample_percentiles: str = 'sample_percentiles'¶
-
col_sample_quantiles: str = 'sample_quantiles'¶
-
col_theoretical_percentiles: str = 'theoretical_percentiles'¶
-
col_theoretical_quantiles: str = 'theoretical_quantiles'¶
-
df_percentiles: pandas.core.frame.DataFrame¶
-
df_quantiles: pandas.core.frame.DataFrame¶
-
figsize: Tuple[float, float] = (8, 6)¶
-
series: pandas.core.series.Series¶
-
tslumen.plot.static.line module¶
Line plots.
-
class
tslumen.plot.static.line.TS(df: pandas.core.frame.DataFrame, figsize: Tuple[float, float] = (8, 3), xaxis: bool = True, yaxis: bool = True, legend: bool = True, line_width: Optional[List[float]] = None, colors: Optional[Union[str, List[str]]] = None)[source]¶ Bases:
tslumen.plot.static.base.FigureTime series line plot.
-
colors: Optional[Union[str, List[str]]] = None¶
-
df: pandas.core.frame.DataFrame¶
-
figsize: Tuple[float, float] = (8, 3)¶
-
legend: bool = True¶
-
line_width: Optional[List[float]] = None¶
-
xaxis: bool = True¶
-
yaxis: bool = True¶
-
tslumen.plot.static.misc module¶
Miscellaneous plots.
-
class
tslumen.plot.static.misc.GrangerGraph(dfp: pandas.core.frame.DataFrame, figsize: Tuple[float, float] = (8, 6), critical: float = 0.05, cmap: str = 'PuBu_r', node_color: str = 'white', edgecolors: str = '#555555', edge_hi: str = '#b60982')[source]¶ Bases:
tslumen.plot.static.base.FigureGranger causality graph.
-
cmap: str = 'PuBu_r'¶
-
critical: float = 0.05¶
-
dfp: pandas.core.frame.DataFrame¶
-
edge_hi: str = '#b60982'¶
-
edgecolors: str = '#555555'¶
-
figsize: Tuple[float, float] = (8, 6)¶
-
node_color: str = 'white'¶
-
-
class
tslumen.plot.static.misc.GrangerMatrix(dfl: pandas.core.frame.DataFrame, dfp: pandas.core.frame.DataFrame, figsize: Tuple[float, float] = (0.8, 0.4), min_figsize: Tuple[float, float] = (8, 4), critical: float = 0.05)[source]¶ Bases:
tslumen.plot.static.base.FigureGranger causality matrix.
-
critical: float = 0.05¶
-
dfl: pandas.core.frame.DataFrame¶
-
dfp: pandas.core.frame.DataFrame¶
-
figsize: Tuple[float, float] = (0.8, 0.4)¶
-
min_figsize: Tuple[float, float] = (8, 4)¶
-